KIT-KIT ligand in the growth of porcine oocytes in primordial follicles.

نویسندگان

  • Mohammad Moniruzzaman
  • Takashi Miyano
چکیده

Mammalian ovaries are endowed with a huge number of small oocytes in primordial follicles (primordial oocytes). The mechanism regulating initiation of oocyte growth and follicular development is not well understood. Several growth factors and cytokines are known to be involved in oocyte growth and follicular development. Herein, the involvement of KIT, a receptor tyrosine kinase, and its ligand, KIT ligand (KL), in the initiation of porcine oocyte growth was examined. At first, KIT expression was examined immunohistochemically in primordial oocytes from neonatal (10-20 days) and prepubertal (about 6 months) pigs. Similar expression of KIT was detected in all oocytes from both the neonatal and prepubertal pigs. Next, to examine the growth of primordial oocytes, ovarian tissues containing primordial oocytes were xenotransplanted into immunodeficient SCID mice. Primordial oocytes from the neonatal pigs grew with follicular development as described previously, whereas those from the prepubertal pigs did not initiate growth in the xenografts after 2 months. To stimulate the growth of primordial oocytes from the prepubertal pigs, they were cultured in a medium supplemented with KL (50 and 100 ng/ml) for 1 or 3 days before xenografting. After 2 months, however, the oocytes did not grow, and the primordial follicles did not develop, although a higher number of primordial oocytes survived in the KL-treated tissues. These results suggest that KIT-KL might not be associated with the growth initiation of porcine primordial oocytes, although they do enhance the survival of the oocytes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Presence of c-kit mRNA in goat ovaries and improvement of in vitro preantral follicle survival and development with kit ligand

This study evaluated the levels of c-kit mRNA in goat follicles and the effects of kit ligand (KL) on the in vitro development of cultured preantral follicles. Preantral follicles isolated from goat ovarian cortex were cultured for 18 days in α-MEM(+) supplemented with KL (0, 50 or 100 ng/mL) in the absence or presence of follicle stimulating hormone (FSH). Real-time PCR showed that c-kit mRNA ...

متن کامل

Somatic Cells Initiate Primordial Follicle Activation and Govern the Development of Dormant Oocytes in Mice

BACKGROUND The majority of oocytes in the mammalian ovary are dormant oocytes that are enclosed in primordial follicles by several somatic cells, which we refer to as primordial follicle granulosa cells (pfGCs). Very little is known, however, about how the pfGCs control the activation of primordial follicles and the developmental fates of dormant oocytes. RESULTS By targeting molecules in pfG...

متن کامل

P-88: Expression Pattern of Maturation Genes During In Vitro Culture of Alginate Encapsulated Preantral Follicles Derived From Frozen-Thawed Mouse Ovaries

Background: This study was set up to evaluate the effect of ovarian tissue slow freezing on in vitro growth and pattern of maturation genes expression in mouse preantral follicles encapsulated within alginate hydrogel. Materials and Methods: Ovaries of 12-14 days old female NMRI mice were randomly allocated into control and slow freezing groups. In slow freezing group, ovaries were equilibrated...

متن کامل

Control of Oocyte Reawakening by Kit

In mammals, females are born with finite numbers of oocytes stockpiled as primordial follicles. Oocytes are "reawakened" via an ovarian-intrinsic process that initiates their growth. The forkhead transcription factor Foxo3 controls reawakening downstream of PI3K-AKT signaling. However, the identity of the presumptive upstream cell surface receptor controlling the PI3K-AKT-Foxo3 axis has been qu...

متن کامل

Kit-Ligand/Stem Cell Factor Induces Primordial Follicle Development and Initiates Folliculogenesis*

Initiation of folliculogenesis through the induction of primordial follicle development in the ovary has an important role in determining the fertility and reproductive fitness of most mammalian species. The factors that control this critical process are largely unknown. The hypothesis tested in the current study was that kit-ligand/stem cell factor (KL) promotes the initiation and progression ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of reproduction and development

دوره 53 6  شماره 

صفحات  -

تاریخ انتشار 2007